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Abstract

The increase in spatially distributed hydrologic modeling warrants a corresponding in-
crease in diagnostic methods capable of analyzing complex models with large numbers
of parameters. Sobol′ sensitivity analysis has proven to be a valuable tool for diagnos-
tic analyses of hydrologic models. However, for many spatially distributed models, the5

Sobol′ method requires a prohibitive number of model evaluations to reliably decom-
pose output variance across the full set of parameters. We investigate the potential
of the method of Morris, a screening-based sensitivity approach, to provide results
sufficiently similar to those of the Sobol′ method at a greatly reduced computational
expense. The methods are benchmarked on the Hydrology Laboratory Research Dis-10

tributed Hydrologic Model (HL-RDHM) model over a six-month period in the Blue River
Watershed, Oklahoma, USA. The Sobol′ method required over six million model eval-
uations to ensure reliable sensitivity indices, corresponding to more than 30 000 com-
puting hours and roughly 180 gigabytes of storage space. We find that the method of
Morris is able to correctly identify sensitive and insensitive parameters with 300 times15

fewer model evaluations, requiring only 100 computing hours and 1 gigabyte of stor-
age space. Method of Morris proves to be a promising diagnostic approach for global
sensitivity analysis of highly parameterized, spatially distributed hydrologic models.

1 Introduction

Distributed hydrologic models aim to improve simulations of watershed behavior by20

allowing forcing data and model parameters to vary across a spatial grid. Recent ad-
vances in hydrologic data collection and computing power have increased the appeal
of distributed models while also allowing further increases in complexity (Smith et al.,
2004, 2012). This added complexity is not without cost; a typical distributed model usu-
ally contains thousands more parameters than a lumped model, causing a commen-25

surate leap in computational requirements as well as challenges in diagnosing model

4276

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/4275/2013/hessd-10-4275-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/4275/2013/hessd-10-4275-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 4275–4299, 2013

Computational
demands of

distributed sensitivity
analysis

J. D. Herman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

behavior (van Griensven et al., 2006; Gupta et al., 2008). Calibration of such highly
parameterized models remains difficult, not only due to the computation involved, but
also because of their highly interactive parameter spaces and nonlinear, multimodal
objective spaces (Gupta et al., 1998; Carpenter et al., 2001). To address these chal-
lenges, this study explores diagnostic methods capable of characterizing the complex5

relationships between distributed model parameters and objectives efficiently and ac-
curately.

Sensitivity analysis has long been used to derive diagnostic insight from hydrologic
models by identifying the key parameters controlling model performance (Hornberger
and Spear, 1981; Franchini et al., 1996; Freer et al., 1996; Wagener et al., 2001; Muleta10

and Nicklow, 2005; Sieber and Uhlenbrook, 2005; Bastidas et al., 2006; Demaria et al.,
2007; Cloke et al., 2008; Van Werkhoven et al., 2008a, 2009; Wagener et al., 2009;
Reusser et al., 2011; Reusser and Zehe, 2011; Herman et al., 2013). Relatively few
studies have performed global sensitivity analysis for spatially distributed models due to
the severe computational demands posed by the dimension of their parameter spaces.15

Distributed sensitivity studies in hydrology and land surface modeling have often ad-
dressed this problem by aggregating parameter values across the model grid or sub-
grids (e.g., Carpenter et al., 2001; Hall et al., 2005; Sieber and Uhlenbrook, 2005;
Zaehle et al., 2005; Alton et al., 2006). Fewer still are studies which have performed
sensitivity analysis on a full set of spatially distributed parameters (e.g., Muleta and20

Nicklow, 2005; van Griensven et al., 2006; Tang et al., 2007a; Van Werkhoven et al.,
2008b). These studies clearly show the benefits of performing global sensitivity anal-
ysis on a distributed model without sacrificing resolution in the parameter space. This
study hypothesizes that the need for such sacrifices (i.e., to reduce computational de-
mands) can be reduced with a careful choice of sensitivity analysis method.25

This study compares the efficiency and effectiveness of two state-of-the-art global
sensitivity analysis methods, Sobol′ sensitivity analysis (Sobol′, 2001; Saltelli, 2002)
and the method of Morris (1991). Sobol′ sensitivity analysis is a variance-based
method that attributes variance in the model output to individual parameters and their
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interactions. In a comparison of several widely-used sensitivity methods, the Sobol′

method was found to provide the most accurate and robust sensitivity indices, partic-
ularly in models with strong parameter interactions (Tang et al., 2007b). However, the
number of model evaluations required by the Sobol′ method increases significantly with
the number of parameters, making its efficiency questionable in the distributed case.5

The method of Morris (1991) measures global sensitivity using a set of local deriva-
tives (elementary effects) taken at points sampled throughout the parameter space.
The method of Morris can estimate parameter interactions by considering both the
mean and variance of the elementary effects.

The two sensitivity analysis methods are implemented for the Hydrology Laboratory10

Research Distributed Hydrologic Model (HL-RDHM) (Koren et al., 2004; Reed et al.,
2004; Smith et al., 2004; Moreda et al., 2006), developed by the United States National
Weather Service (NWS). The model is used to simulate the Blue River Watershed,
Oklahoma, USA, over a six-month period using hourly timesteps and forcing data.
Sensitivity results from the Sobol′ and Morris methods are compared spatially and15

statistically to determine the extent to which the Morris method provides computational
savings while maintaining sensitivity indices sufficiently similar to those of the Sobol′

method. In turn, we investigate whether the method of Morris is a promising candi-
date to overcome the challenges to diagnostic analysis posed by the high-dimensional
parameter spaces of distributed hydrologic models.20

2 Model and study area

2.1 HL-RDHM model

The HL-RDHM, developed by the United States NWS, is a modeling framework for
building lumped, semi-distributed, and fully distributed hydrologic models (Koren et al.,
2004; Reed et al., 2004; Smith et al., 2004; Moreda et al., 2006). The model is struc-25

tured using a 4 km×4 km grid resolution derived from the Hydrologic Rainfall Analysis
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Project (HRAP), which corresponds to the NEXRAD precipitation products developed
by the US NWS. The water balance within each grid cell is modeled with the Sacra-
mento Soil Moisture Accounting (SAC-SMA) model (Burnash and Singh, 1995). Fig-
ure 1c shows the water balance components of the SAC-SMA model in each grid cell.
Routing between grid cells is modeled with a kinematic wave approximation to the St.5

Venant equations. This study performs sensitivity analysis on 14 parameters of the
SAC-SMA model within each cell of the HRAP grid as shown in Fig. 1c.

2.2 Study area: Blue River, Oklahoma

The computational experiments in this study were performed for the Blue River Basin
in southern Oklahoma, one of the basins included in the Distributed Model Inter-10

comparison Project Phase 2 (DMIP2) (Smith et al., 2012). Figure 1a shows the location
of the Blue River. The watershed is represented by 78 HRAP grid cells, as shown in
Fig. 1b, resulting in a total basin area of 1248 km2. The model was forced using hourly
NEXRAD precipitation data over the 6 month period from 16 November 2000 to 15 May
2001, preceded by a 3 week warmup period. Figure 2 shows the hourly precipitation15

and streamflow data for the Blue River during the selected simulation period. As Fig. 2
indicates, the Blue River remains at low flow during much of the simulation period,
punctuated by a series of large rainfall events.

3 Sensitivity analysis methods

3.1 Sobol′ sensitivity analysis20

Sobol′ sensitivity analysis (Sobol′, 2001; Saltelli, 2002) is a global, variance-based
method that attributes variance in the model output to individual parameters and the
interactions between parameters. In previous work, this approach was found to provide
the most accurate and robust sensitivity indices, particularly in models with strong pa-
rameter interactions (Tang et al., 2007b). The number of model evaluations required by25
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the Sobol′ method increases significantly with the number of parameters in a model,
making it difficult to implement for fully distributed models.

In general, the attribution of total output variance to individual model parameters and
their interactions can be written as:

D(f ) =
∑
i

Di +
∑
i<j

Di j +
∑
i<j<k

Di jk +D12...p (1)5

where D(f ) represents the total variance of the output metric f ; Di is the first-order
variance contribution of the i -th parameter, Di j is the second-order contribution of the
interaction between parameters i and j ; and D12...p contains all interactions higher than
third-order, up to p total parameters. In this study, each parameter’s total sensitivity
index is used (i.e., its individual effects plus an estimate of its interactions with all other10

parameters). The first-order and total sensitivity indices are defined as follows:

First-Order Index: Si =
Di

D
(2)

Total-Order Index: STi = 1−
D∼i
D

. (3)

The first-order index is the fraction of the total output variance caused by the param-15

eter i . The total order index is one minus the fraction of total variance attributed to D∼i ,
which represents all parameters except i . The total order index removes parameter i
from the analysis and attributes the resulting reduction in variance to that parameter.
The difference between a parameter’s first and total order indices represents the effects
of its interactions with other parameters.20

Sobol′ sensitivity indices were calculated according to the methods proposed by
Sobol′ (2001) and Saltelli (2002, 2008), in which sensitivity indices are approximated
using numerical integration in a Monte Carlo framework. A global sample of the pa-
rameter space is taken using a quasi-random Sobol′ sequence of values to achieve
a uniform coverage of the space (Sobol′, 2001). The parameter sets generated from25
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these sampling ranges are evaluated in the model, creating a distribution of output
values, f , which have a total variance D as follows:

f0 =
1
n

n∑
s=1

f (θs) (4)

D =
1
n

n∑
s=1

f 2(θs)− f 2
0 . (5)

5

Here, f0 is the mean of the distribution of model outputs and θs represents the parame-
ter set associated with sample s. The variance contributions Di and D∼i are calculated
according to Sobol′ (2001) and Saltelli (2008). First, the N sampled parameter sets are
divided into two equal groups, A and B. The sample set A is used to calculate the total
variance as shown in Eqs. (4) and (5). The sample set B is used to resample or fix10

each parameter as necessary in the following expressions:

Di =
1
n

n∑
s=1

f
(
θA
s

)
f
(
θB
∼is,θ

A
is

)
− f 2

0 (6)

D∼i =
1
n

n∑
s=1

f
(
θA
s

)
f
(
θA
∼is,θ

B
is

)
− f 2

0 . (7)

The parameter sets θi are modified to indicate which parameters are sampled from15

which set. The sample set is denoted by the superscript A or B; the parameters taken
from that set are denoted either by i (the i -th parameter) or ∼ i (all parameters except
i ). This scheme allows the estimation of first and total order sensitivity indices with
a total of N(p+1) model evaluations, where p is the number of parameters for which
indices are to be calculated.20
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3.2 Method of Morris

The method of Morris (1991) derives measures of global sensitivity from a set of local
derivatives, or elementary effects, sampled on a grid throughout the parameter space.
The method of Morris is based on one-at-a-time (OAT) methods, in which each param-
eter xi is perturbed along a grid of size ∆i to create a trajectory through the parameter5

space. For a given model with p parameters, one trajectory will contain a sequence
of p such perturbations. Each trajectory yields one estimate of the elementary effect
for each parameter, i.e., the ratio of the change in model output to the change in that
parameter. Equation (8) shows the calculation of a single elementary effect for the i -th
parameter.10

EEi =
f (x1, . . . ,xi +∆i , . . . ,xp)− f (x)

∆i
(8)

where f (x) represents the prior point in the trajectory. In alternative formulations, both
the numerator and denominator are normalized by the values of the function and pa-
rameter xi , respectively, at the prior point x (van Griensven et al., 2006). Using the
single trajectory shown in Eq. (8), one can calculate the elementary effects of each pa-15

rameter with only p+1 model evaluations. However, by using only a single trajectory,
this OAT method is highly dependent on the location of the initial point x in the param-
eter space and does not account for interactions between parameters. For this reason,
the method of Morris (1991) performs the OAT method over N trajectories through the
parameter space. The resulting set of elementary effects is then averaged to give µ,20

the estimate of first-order effects. Similarly, the standard deviation of the set of elemen-
tary effects σ describes the variability throughout the parameter space and thus the
extent to which parameter interactions are present. This study uses the improvement
of Campolongo et al. (2007) in which an estimate of total-order sensitivity of the i -th
parameter, µ∗

i , is computed from the mean of the absolute values of the elementary25

effects over the set of N trajectories as shown in Eq. (9).
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µ∗
i =

1
N

N∑
j=1

∣∣∣EEj
i

∣∣∣ (9)

4 Computational experiment

The sensitivity analyses were performed on the 14 SAC-SMA model parameters as
indicated in Fig. 1. The lower and upper bounds for each parameter are based on
the a priori gridded parameter values derived by the NWS (Koren et al., 2004) and5

extended for sensitivity analysis by Van Werkhoven et al. (2008b). These parameter
ranges are included in the Supplement. Parameter values for each grid cell were sam-
pled separately, resulting in a total of 78×14=1092 total sampled parameters. Rather
than measure the sensitivity of the output streamflow directly, we measure the sensi-
tivity of the root mean squared error (RMSE) metric, calculated using the known hourly10

streamflow values over the 6 month simluation period. This ensures that our sensitivity
indices are grounded in truth and describe the controls on model performance.

The sample sizes and corresponding number of model evaluations required for both
the Sobol′ and Morris methods are shown in Table 1. For the Sobol′ method, sample
sizes of N =1000 and N =6000 were used, resulting in just over 1 million and 6 mil-15

lion model evaluations, respectively. These values represent the limit of computational
feasibility for this model at an hourly timestep, to derive maximally accurate baseline
values of the sensitivity indices. The two sample sizes were employed to verify conver-
gence of the Sobol′ indices. Confidence intervals for the sensitivity indices derived from
the bootstrap method (Efron and Tibshirani, 1994; Archer et al., 1997) were monitored20

to ensure convergence of the Sobol′ method at the N =6000 level. For the method
of Morris, sample sizes ranging from N =20 to N =100 were chosen to determine if
these can provide suitable results with orders of magnitude fewer model evaluations.
The sensitivity analyses were performed using the CyberSTAR high-performance clus-
ter at Penn State University, which contains a combination quad-core AMD Shanghai25
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processors (2.7 Ghz) and Intel Nehalem processors (2.66 Ghz). Approximately 50 000
computing hours were required to complete the experiment.

5 Results and discussion

The results of the sensitivity analyses can be addressed through the lens of two pri-
mary questions: first, to determine the sample size required for the Sobol′ method to5

return reliable sensitivity indices; and second, to determine the suitability of the indices
returned by the method of Morris relative to the baseline created by the Sobol′ method.

5.1 Convergence of Sobol′ indices

Figure 3 shows the spatial maps of total-order Sobol′ sensitivity indices for the sample
sizes N =1000 and N =6000. The four most sensitive parameters of the SAC-SMA10

model are shown, as well as the cell-level sum of sensitivity indices. The total-order
indices vary over a small range since the output variance must be distributed across
the full set of distributed parameters, 1092 in total.

Figure 3 reveals several interesting spatial patterns of sensitivity. First, the most sen-
sitive parameters are primarily upper and lower storage zone maxima. The lower-zone15

storage maxima, LZFPM and LZFSM, are most sensitive in the headwater portion of
the basin, while the upper-zone storage maximum UZFWM is most sensitive toward
the outlet of the basin. The resulting summation of sensitivity indices shows a division
of the most active cells, with one group in the headwaters and another near the outlet.

From Fig. 2, it is clear that most precipitation events during the simulation period20

are distributed across nearly all grid cells in the watershed. This suggests that much
of the spatial variability of sensitivity in Fig. 3 is due to processes within the model
itself rather than forcing patterns. The RMSE metric is most sensitive to errors in peak
flows, so the sensitivity indices in Fig. 3 can be interpreted in the context of the several
high-flow events shown in the hydrograph in Fig. 2. Toward the outlet of the basin, the25

4284

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/4275/2013/hessd-10-4275-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/4275/2013/hessd-10-4275-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 4275–4299, 2013

Computational
demands of

distributed sensitivity
analysis

J. D. Herman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

primary runoff-generating mechanisms in the model are overflow from the upper-zone
free water storage (UZFWM) and flow out of the upper zone (controlled by UZK). The
fact that the lower zone rate constants, LZPK and LZSK, are not sensitive indicates
that they act on a slower timescale and thus do not affect RMSE. In the headwaters,
the lower zone storage maxima (LZFPM and LZFSM) and the rate constant UZK are5

most sensitive, likely because these parameters must not allow too much direct runoff
from the headwater region to prevent the model from overshooting the observed flow
peaks and causing poor RMSE performance. While the temporal distribution of forcing
can affect the sensitivity indices shown in 3, the spatial distribution can be restricted to
the processes occurring within the model.10

Also visible in Fig. 3 is the difference in Sobol′ sensitivity indices as a function of
sample size. At a sample size of N =1000, the most sensitive cells are identified, but
it is clear that cells with intermediate sensitivity values largely remain unidentified. For
example, it is common to see sensitive cells (red) adjacent to insensitive cells. Intu-
itively, we should expect to see a smoother spatial gradient of sensitivity in which the15

most sensitive cells are adjacent to intermediate-sensitivity cells, which in turn are ad-
jacent to low-sensitivity cells. This is achieved to a larger extent with a sample size
of N =6000. Here, the sensitivity indices vary more smoothly in space, indicating that
the N =6000 case provides a baseline for total-order sensitivity indices. The bootstrap
confidence intervals confirm convergence for the N =6000 sample size. The N =100020

case would not be sufficient to capture the full range of sensitivity, a fact which under-
scores the high computational requirements of the Sobol′ method.

5.2 Comparison of Sobol′ and Morris indices

The Sobol′ sensitivity indices from the N =6000 case form a set of target values
against which the method of Morris will be compared. Figure 4 compares this target to25

the lowest-sample Morris experiment, N =20, for all 14 of the SAC-SMA parameters
and the sums of all indices in each grid cell. The Sobol′ indices offer a quantitative
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interpretation as a fraction of total variance, but the Morris indices do not; the latter are
normalized to avoid this misinterpretation.

Figure 4 shows that the total-order indices calculated by the method of Morris with
only N =20 samples successfully capture the spatial patterns of the Sobol′ indices with
N =6000 samples. The Morris indices are able to isolate the most sensitive parame-5

ters, along with their correct locations in the watershed: LZFPM, LZFSM, and UZK in
the headwaters, and UZFWM, UZK, and ADIMP near the outlet. It also correctly iden-
tifies the parameters that are insensitive over the simulation period: LZTWM, PCTIM,
PFREE, UZTWM, and RIVA. The sums of indices are comparable between the Sobol′

and Morris methods, as well, with sensitive areas near the headwaters and outlet, and10

intermediate sums of sensitivity in the rest of the basin. In general, the Morris indices
follow smooth spatial patterns, which aligns with intuition regarding sensitive regions of
the watershed. From the sensitivity maps in Fig. 4, The method of Morris with a sam-
ple size of N =20 is able to correctly identify sensitive and insensitive parameters, as
well as their spatial patterns, at greatly reduced computational expense relative to the15

Sobol′ method.
The Morris sensitivity indices can also be compared statistically to the Sobol′ indices

for the N =6000 case to ensure sufficient similarity. Figure 5 compares the sensitiv-
ity indices for each method, as well as the sensitivity ranks (1–1092), for all of the
Morris sample sizes from N =20 to N =100. The sensitivity indices are compared using20

a nonlinear Spearman correlation coefficient, because a one-to-one correspondence
between Sobol′ and Morris indices is not necessary. The rankings are compared with
a linear correlation coefficient, because these ideally will exhibit a one-to-one corre-
spondence.

The top row of Fig. 5 shows that the Morris µ* values for all sample sizes are well-25

correlated with the Sobol′ indices with a sample size of N =6000. Importantly, there
appears to be little benefit in running the method of Morris for sample sizes greater than
N =20, since the correlation remains similar for higher sample sizes. The relationship
between Morris µ* values and Sobol′ indices is approximately linear for low-sensitivity
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parameters. However, the relationship becomes nonlinear for high-sensitivity parame-
ters, where the Morris µ* values appear to flatten out. This suggests that the Sobol′

method can better distinguish between the most sensitive parameters, whereas the
method of Morris cannot. Still, the method of Morris successfully distinguishes sensi-
tive from insensitive parameters, and a sample size of N =20 is clearly sufficient to5

achieve this.
The bottom row of Fig. 5 shows that the sensitivity rankings given by the method of

Morris are well-correlated with those given by the Sobol′ method with N =6000. Again,
a sample size of N =20 for the method of Morris appears sufficient to achieve a good
correlation, and little is gained by increasing the sample size further. Of particular in-10

terest are the clusters of highly-correlated parameters ranked near the most and least
sensitive (ranks 1 and 1092, respectively). This indicates that the method of Morris can
isolate the most and least sensitive parameters with high reliability, reinforcing its utility
as a screening method.

Given that both the spatial and statistical comparisons between the Sobol′ and Mor-15

ris sensitivity indices indicate the success of the method of Morris, it is worth exploring
the amount of computation saved to achieve a highly similar set of sensitivity results.
Figure 6 shows the location of each experiment in the space defined by the computation
time and storage required. The largest Sobol′ experiment, with N =6000, required over
6 million model evaluations, leading to more than 30 000 h of computation time and ap-20

proximately 180 gigabytes of storage space to store the model output. By contrast, the
smallest Morris experiment, with N =20, required roughly 100 h of computation and 1
gigabytes of storage space. This represents a factor of 300 savings in both the runtime
and storage dimensions relative to the Sobol′ method. As shown in Figs. 4 and 5, the
sensitivity indices calculated by this lowest-sample Morris experiment are spatially and25

statistically comparable to those calculated by the highest-sample Sobol′ experiment,
indicating that the method of Morris provides significant computational savings without
significant degradation of solution quality.
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6 Conclusions

The method of Morris is able to correctly identify sensitive and insensitive parameters
for a highly parameterized, spatially distributed watershed model with 300 times fewer
model evaluations than the Sobol′ method. Even for this complex model, the efficient
factorial sampling scheme of the method of Morris is sufficient to isolate the controls5

on model performance, without any prior assumptions on the form of the model output.
For many distributed modeling applications, the Sobol′ method requires a prohibitive
number of model evaluations. In light of these results, the method of Morris proves to
be a promising way forward for efficent global sensitivity analysis of distributed models.
Future work will include an investigation of time-varying sensitivity to determine the10

extent to which spatial sensitivity patterns change during wet and dry periods. The
increasing use of spatially distributed hydrologic models requires that diagnostics such
as these sensitivity analysis methods be evaluated not only in terms of their statistical
effectiveness but also by their efficiency, to ensure that hydrologic modelers can obtain
maximally reliable diagnostic insights at a reasonable computational cost.15

Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/10/4275/2013/
hessd-10-4275-2013-supplement.pdf.
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Table 1. Sample sizes and number of model runs performed for each of the sensitivity analysis
methods.

Method Sample size Model evaluations

Sobol′
1000 1 092 000
6000 6 552 000

Morris

20 21 840
40 43 680
60 65 520
80 87 360

100 109 200
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Fig. 1. (A) Location of the Blue River Basin in southern Oklahoma, USA. (B) The 78 HRAP grid
cells of the Blue River Basin (shaded). (C) The Sacramento Soil Moisture Accounting (SAC-
SMA) model, which simulates the water balance in each grid cell.
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Fig. 2. The hourly hydrograph of the 6 month simulation period for the Blue River Basin, with
a 3 week warmup period. The precipitation amounts are based on the mean value across the
78 HRAP grid cells in the basin. The colors of the precipitation bars indicate the fraction of
grid cells receiving more than 0.1 mm precipitation, representing the spatial distribution of each
hourly rainfall value.
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Fig. 3. Maps of the total-order Sobol′ sensitivity indices for the four most sensitive parameters
as well as the total sum in each grid cell. The maps are shown for the N =1000 and N =6000
sample sizes. The lower sample size shows a coarse identification of sensitive and insensi-
tive cells. The N =6000 sample size shows smoother spatial patterns of sensitivity indices,
suggesting that this level of sampling is required for reliable Sobol′ indices.
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Fig. 4. Total-order sensitivity indices calculated by the Sobol′ method, with sample size
N =6000, and the method of Morris, with N =20. The method of Morris is able to correctly
identify sensitive and insensitive parameters, as well as their spatial patterns, with far fewer
model evaluations.
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Fig. 5. Statistical comparison of sensitivity indices and sensitivity ranks (1–1092) between the
Sobol′ method (N =6000) and the method of Morris with sample sizes from N =20 to N =100.
The sensitivity indices are compared using a nonlinear Spearman correlation coefficient (ρ),
while the rankings are compared with a linear correlation coefficient (R2). Each plot contains all
14 parameters from each grid cell, for a total of 1092 points.
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Fig. 6. Computation time (hours) and storage (gigabytes) required for each experiment. The
method of Morris with N =20 represents a factor of 300 computational savings compared to
the Sobol′ method with N =6000.
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